quinta-feira, 19 de novembro de 2020

Teorema de Stewart

 Introdução:

Em geometria plana, o Teorema de Stewart é uma relação entre os lados de um triângulo e uma ceviana dada. Tem esse nome em homenagem ao matemático escocês Mattew Stewart, responsável por publicar o teorema no ano de 1746.

Teorema:

Seja a, b, c os lados do triângulo ABC da figura abaixo. Sendo p uma ceviana divide o lado a em dois segmentos de medidas m e n, teremos a seguinte relação:





b² • n + c² • m= a • (p² + m • n)

Demonstração:

Aplicando a lei dos cossenos nos dois triângulos formados pelo segmento CD na figura abaixo, teremos:




b²= p² + m² -2pm cos θ  (eq.I)
c²=p² + n² - 2pn cos (180° - θ) (eq.II)

Lembrando que cos (180° - θ)= -cos θ, teremos em eq.II:
c²=p² + n² + 2pn cos θ

Isolando cos θ em ambas as equações, teremos:

b²= p² + m² -2pm • cos θ =>cos θ= (p² + m² - b²)/2pm

c²=p² + n² + 2pn • cos θ => cos θ= (c² - p² - n²)/2pn

Visto que as duas expressões representam cos θ, teremos:

(p² + m² - b²)/2pm= (c² - p² - n²)/2pn

Simplificando:

(p² + m² - b²)/m=(c² - p² - n²)/n
n • (p² + m² - b²)= m • (c² - p² - n²)
• p² + n • m² - n • b²= m c² - m • p² - m • n²
n• p² + n • m² + • p² + m • n²= m • c² + b² • n
p² • (m + n) + mn • (m + n)= • c² + b² • n

Pela figura, a=m +n. Substituindo
p² • a+ mn • a= • c² + b² • n
 (p² + mn)= c² • m +  b² • n
c² • m +  b² • n=  (p² + mn) (c.q.d)

Este teorema pode também ser provado pelo Teorema de Pitágoras.

Agradecimentos:

Agradeço a todos que prestigiaram o meu blog e espero que gostem das atuais e futuras postagens. 
Quem tiver dúvidas, pode comentá-las. Espero ter ajudado, principalmente em meio a esta situação da pandemia. 




Nenhum comentário:

Postar um comentário